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We investigate transport and Coulomb drag properties of semiconductor-based electron-hole bilayer systems.
Our calculations are motivated by recent experiments in undoped electron-hole bilayer structures based on
GaAs-AlGaAs gated double quantum well systems. Our results indicate that the background charged impurity
scattering is the most dominant resistive scattering mechanism in the high-mobility bilayers. We also find that
the drag transresistivity is significantly enhanced when the electron-hole layer separation is small due to the
exchange induced renormalization of the single layer compressibility. However, the Fermi-liquid many-body
approach cannot explain the recently observed upturn in the drag resistance with the lowering of temperature,
which may be indicating the emergence of an apparent non-Fermi-liquid excitonic phase in closely spaced
bilayers.
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I. INTRODUCTION

Much interest has recently focused on bilayer semicon-
ductor structures,1–3 where two quantum wells are put in
close proximity with a high insulating barrier between them
to suppress interlayer tunneling. Such systems are of intrinsic
interest because competition between intralayer and inter-
layer Coulomb interaction �i.e., correlation effects�, particu-
larly at low carrier densities when Coulomb interaction
dominates �or in high magnetic fields, when the electronic
kinetic energy is quenched�, may lead to exotic ground
states, collective properties, and quantum phase transitions.
Although much of the recent work has concentrated on bi-
layer quantum Hall systems,2 the essential issue of the com-
petition between electron kinetic energy and intralayer/
interlayer Coulomb correlations is quite generic, and
interaction-induced novel ground states and collective prop-
erties are possible even in the zero-field situation if the car-
rier density is low enough and the two layers are close
enough to produce strong interlayer interaction.

Significant recent progress3 has been made in the fabrica-
tion of two-dimensional �2D� electron-hole bilayers because
of intense interest in exciton condensation effects that are
predicted to occur at low carrier densities and close proxim-
ity of the two-dimensional electron gas �2DEG� to the two-
dimensional hole gas �2DHG�.4 At sufficiently low densities
the attractive interlayer Coulomb interaction between an
electron in one layer with a hole in the other layer would
dominate over the intralayer repulsive interaction. An exci-
tonic phase with electron-hole pairs �EHP� may form under
such conditions, being lower in energy than the independent
electron and hole Fermi-liquid layers. Unlike excitons in
bulk semiconductors, these EHPs would not annihilate by
emitting radiation because the electrons and holes are spa-
tially separated in two different layers.

Exciton condensation has previously been reported in
electron or hole, but not electron hole, bilayer quantum Hall
systems.2 At a zero magnetic field the measurement of exci-
ton effects in electron-hole �e-h� bilayers has proven to be
extremely difficult mostly because of the difficulties associ-
ated with fabricating devices with good electrical contacts

and small layer separations, but also because of the limita-
tion of adjusting the densities in the two layers to match up
the density of the 2DEG to the density of the 2DHG.3 How-
ever, recent fabrication of e-h bilayer systems5–7 based on
the heterostructure insulated-gate field-effect transistors
�HIGFETs� �Refs. 8 and 9� allows for independent contacts
to each layer as well as high-mobility and independently
tunable low densities for the 2DEG and 2DHG. Recent
experiments6,7 in very low-density and high quality e-h bi-
layers on HIGFETs show anomalous drag resistance behav-
ior. The e-h bilayers on HIGFETs are undoped gated double
quantum well devices, so the transport properties of the de-
vice may be different from the previously investigated modu-
lation doped e-h bilayer systems.3 Recent experiments5 have
reported on the density-dependent 2D mobilities of the elec-
trons and holes in e-h bilayer, where the anomalous drag
resistivity has been observed.6,7

Our goal in this paper is to develop detailed and realistic
quantitative theories for density-dependent transport and
drag in 2D e-h bilayers using the Fermi-liquid picture for
both carrier systems. For transport calculations, we consider
Coulomb scattering by unintentional random charged impu-
rities invariably present in the background. For drag calcula-
tions, we consider the Coulomb interaction between the elec-
tron and the hole layers. The important ingredient of physics
included in both theoretical calculations is wave vector and
frequency dependent dielectric screening by the electrons
and holes themselves. For the charged impurity scattering
induced transport calculation, the relevant screening is static
since the impurities are quenched in the background whereas
for the e-h frictional drag, the full dynamical screening must
be considered in the theory. Our aim �and hope� in this work
is to assist in the experimental detection of the excitonic
phase in e-h bilayers through a careful comparison between
our theory and the recent measurements.5–7 Any qualitative
�or even dramatic quantitative� difference between our
theory and the experimental data could provide suggestive
evidence �or at least, interesting clues� for the failure of the
Fermi-liquid picture in the physical system, thereby indicat-
ing the possible emergence of a novel non-Fermi-liquid col-
lective phase.
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In this paper, motivated by recent experiments on low-
density e-h bilayers,5–7 we study the transport properties of
undoped electron-hole bilayers fabricated on HIGFETs. We
calculate both the mobilities of each layer and the frictional
Coulomb drag resistivity. In order to understand the low-
temperature 2D transport properties we have carried out a
microscopic transport calculation using the Boltzmann
theory.10,11 Since the HIGFET is an undoped heterostructure,
the 2D carrier resistivity is limited by screened background
random Coulomb scattering in high-mobility systems. With
the unintentional background random three-dimensional
�3D� charged impurities as the main scattering center we
obtain good agreement with the recent transport
experiments5,6 in undoped e-h bilayer systems.

In order to calculate the frictional drag resistivity of un-
doped electron-hole bilayers we use the many body-Fermi
liquid diagrammatic perturbation theory with dynamically
screened electron-electron interaction.1,12 The recent experi-
ments in electron-hole bilayers with small layer separations
and especially at low temperatures and densities6,7 show that
the measured Coulomb drag increases as the temperature de-
creases at the lowest measured temperatures, which cannot
be explained based on the Fermi-liquid theory, since the
Fermi-liquid theory predicts the low-temperature T2 �or
T2 ln T� behavior of drag resistivity.1 This anomalous behav-
ior in the e-h drag may be related to the exciton condensa-
tion. However, our calculation shows good agreement with
the experimentally observed drag data for the electron-hole
bilayer with large separation, and even bilayers with small
separation above the critical temperature of possible exciton
condensation. The reasonable agreement between our theory
and the measured drag6,7 in the larger layer separation regime
for all temperatures and the smaller separation regime for
higher temperatures is in some sense tantalizing circumstan-
tial evidence in support of the emergence of the collective
excitonic phase in the measurements reported in Refs. 6 and
7, where the drag shows a minimum as a function of tem-
perature and increases with decreasing temperature at the
lowest temperature.

We describe our background charged impurity limited
transport theory and results in Sec. II, followed by our e-h
Coulomb drag results in Sec. III. We conclude in Sec. IV
with a discussion.

II. TRANSPORT

We start by writing down the theoretical formulae for con-
ductivity � in the many-body Fermi-liquid RPA-Boltzmann
theory approximation widely used in the literature.10,11 The
carrier conductivity � is given by �=ne�, where n is the
carrier density and the carrier mobility � is given by �
=e��� /m. Here m is the carrier effective mass and ���E�� is
the energy averaged transport relaxation time. We calculate
the impurity ensemble averaged relaxation time ��E� due to
elastic disorder scattering by the background quenched
charged impurities in the Born approximation:

1

��Ek�
=

2�

�
�
�
� d2k�

�2��2�
−	

	

dzNi
����z�


 �u����k − k�;z��2�1 − cos �kk����Ek − Ek�� ,

�1�

where E�k�=�2k2 /2m is the 2D carrier energy for 2D wave
vector k; �kk� is the scattering angle between carrier scatter-
ing wave vectors k and k�; the delta function ��Ek−Ek��
assures energy conservation for elastic scattering due to
charged impurities where the screened scattering potential is
denoted by u����q ;z� with q�k−k� as the 2D scattering
wave vector and z is the quantization or the confinement
direction normal to the 2D layer. The quantity Ni

����z� in Eq.
�1� denotes the 3D charged impurity density �with the z de-
pendence reflecting a possible impurity distribution� of the
�th kind with � representing the various possible types of
impurities which may be present in 2D semiconductor struc-
tures. However, we emphasize that there is no intentional
doping in the HIGFETs used in Refs. 5–7. Therefore, we use
the unintentional random background 3D impurities as the
only scattering source in our calculation to keep the number
of unknown parameters a minimum—this background ran-
dom 3D impurity density essentially sets the overall scale of
resistivity in our results. We emphasize that we can obtain
good qualitative agreement with experimental data by choos-
ing three different kinds of charged impurities �i.e., interface,
remote, and bulk� parameterized by a few reasonable param-
eters, but we do not see much point in this data fitting-type
endeavor, and therefore keep only one unknown parameter in
the theory, n3D, which is the 3D density of the unintentional
charged impurities, which are assumed to be uniformly and
randomly distributed the background throughout the whole
sample. As emphasized above, this only lets the scale of the
overall resistivity, not its qualitative behavior.

In Eq. �1� the screened impurity potential u����q ;z� is
given by u����q ;z��Vimp

��� �q ;z� /�q� where Vimp
��� is the bare

potential due to a charged impurity and �q� is the carrier
dielectric screening function which is necessary since the
charged impurity potential is Coulombic. The bare impurity
potential is given by

Vimp
��� �q;z� =

2�Z���e2

�q
Fimp

��� �q;z� , �2�

where Z��� is the impurity charge strength, � is the back-
ground �static� lattice dielectric constant, and Fimp is a form
factor determined by the location of the impurity and the
subband wave function ��z� defining the 2D quantum well
confinement. The finite wave vector dielectric screening
function is written in the random phase approximation �RPA�
as

�q� = 1 − v�q���q,T� , �3�

where ��q ,T� is the 2D irreducible finite-temperature �and
finite wave vector� polarizability function and v�q�
=v2D�q�f�q� is the effective bare electron-electron �Cou-
lomb� interaction in the system with v2D�q�=2�e2 / ��q� be-
ing the 2D Fourier transform of the Coulomb potential, and
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f�q� being the Coulomb form factor arising from the subband
wave functions ��z�.

In Fig. 1 the sample configuration, following the experi-
mental references,5–7 used in our calculation is shown sche-
matically. The electron and hole quantum wells with widths
a=200 Å are separated by the d=300 Å barrier, which are
close to the experimental sample parameters. Since there is
no intentional doping, the charged Coulomb impurities are
distributed randomly with a constant 3D impurity density
n3D throughout the sample �both barriers and quantum
wells�. Our sample configuration resembles the experimental
setup of Refs. 5–7.

In Fig. 2 we show �a� the calculated density-dependent
mobility of each layer and �b� the ratio of hole mobility to
electron mobility at fixed temperature T=300 mK for the
sample configuration given in Fig. 1. The symbols indicate
some representative experimental data points taken from

Ref. 5. We use a fixed charged impurity density n3D=4.2

1014 cm−3 and the known effective mass m=0.067me for
electrons and m=0.3me for holes, respectively. As empha-
sized above the only resistive carrier scattering included in
the results of Fig. 2 is that by background charged impurities.
�We discuss later the issue of interlayer e-h scattering itself
contributing to 2D transport, arguing it to be negligibly
small�. We assume a single value of n3D for calculating elec-
tron and hole mobilities in the different layers. We include
the effects of confinement potential through the infinite
square-well confinement model, which should be excellent
for the samples of Refs. 5–7. We neglect all phonon-
scattering effects because our theoretical estimate shows
phonon scattering to be negligible for 2D carriers in GaAs
structures in the T�1 K regime of interest to us. The pho-
non scattering becomes relevant typically in the T�3 K
regime.13

For the experimental density range �n	5
1010–2

1011 cm−2� our theoretically calculated density-dependent
electron mobility has an effective exponent �
1 in ��n�,
which is consistent with the experimental data of Ref. 5,
indicating that the screened background charged impurity is
the main scattering source in the sample. For the density-
dependent hole mobility we cannot explain the experimental
data for all densities by a single power-law behavior. At high
hole densities, p�1011 cm−2 the calculated mobility ap-
proaches an approximate power-law behavior �
0.7, which
is in excellent agreement with the experimental data of Ref.
5. At low hole densities, p�1011 cm−2, the power-law
changes to a much stronger function of density, pointing to a
change in the screening properties of the system at low car-
rier density. Although our theoretical result in Fig. 2�a�
indicates a changing exponent � for the holes at lower
��1011 cm−2� hole densities, the experimental � is much
more strongly affected by the decreasing density than our
RPA Boltzmann transport theory. We emphasize that the dis-
crepancy between the low-density experimental data and our
calculation indicates that the screening theory, which cap-
tures the essential experimental features at higher densities,
does not describe the hole transport very well at the lower
range of the experimental density.

There are several understandable reasons for the system-
atic discrepancy between our theory and the lower density
hole data. First, the holes, being more massive �mh=0.3m
versus me=0.07m�, have stronger interaction effects than
electrons as characterized by the dimensionless interaction
coupling strength rs= ��n�−1/2 /aB where aB=��2 /me2 is the
effective Bohr radius, which for the holes varies between
rs
12−6 �nh=5
1010–2
1011 cm−2� compared with rs

2.7−1.3 for the electrons. The large value of the hole in-
teraction parameter rs	12 at the hole density of 5

1010 cm−2 indicates that our RPA-Boltzmann theory may
be less quantitatively reliable at lower hole densities than at
lower electron densities since the theory is really quantita-
tively valid only at small rs, where, of course, we get excel-
lent agreement with the experimental data both for electrons
and holes. Second, and perhaps more importantly, charged
impurities introduce strong density inhomogeneity at low
carrier densities as linear screening eventually breaks down
leading to a 2D metal to 2D insulator transition �2D

XXXXX X X X X X X X X X

2DEG

2DHG

aa d

FIG. 1. The sample configuration used in this calculation is
shown schematically. In this calculation we use the parameters a
=200 Å, d=300 Å. “x” denotes the charged impurities which are
distributed uniformly in the background with a 3D effective density
of n3D.
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FIG. 2. �Color online� �a� Calculated mobilities of electron �m
=0.067� and hole �m=0.3� as a function of carrier density. The
symbols are experimental data taken from Ref. 5. �b� The ratio of
hole mobility to electron mobility. The solid lines are full theory
and the dashed line in �b� is the simple approximation given in the
Eq. �4� of the text. Here we use n3D=4.2
1014 cm−3.
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MIT�,14,15 thereby causing a systematic failure of our linear
screening RPA-Boltzmann theory at low enough densities.
While such a density inhomogeneity driven failure of our
linear RPA-Boltzmann theory is inevitable at low enough
carrier densities for both the electrons and the holes, the
critical density for the hole 2D MIT �Ref. 15� is typically
much larger than the corresponding electron critical
density.14 We thus expect that our RPA-Boltzmann theory
will deviate more from the experimental data for 2D holes
than for 2D electrons at lower carrier densities, particularly
since the 2D holes have lower mobilities than the 2D elec-
trons. We believe that this nonlinear screening effect along
with the large rs values are responsible for the discrepancy
between theory and experiment for the low-density hole re-
sults shown in Fig. 2.

In Fig. 2�b� we show the ratio of hole mobility to electron
mobility as a function of carrier density. In the high-density
regime, n�1011 cm−2, the measured experimental mobility
ratio is about 0.3 and decreases gradually as density in-
creases. Our calculated �h /�e shows excellent agreement
with experimental data in the high-density limit, but deviates
from the experiment at low ��1011 cm−2� density for rea-
sons discussed above �i.e., large rs and density inhomogene-
ity�. For screened Coulomb scattering, assuming strong
screening, we can easily derive the approximate qualitative
formula for the mobility by ignoring the wave vector depen-
dence in Eq. �1� for transport:

� � �2kF + qTF�2/m2, �4�

where kF= �2�n�1/2 is the Fermi wave vector and qTF=2 /aB
is the Thomas Fermi screening wave vector. Thus, in the
high-density limit �qTF /2kF�1, typically n�1013 cm−2 for
GaAs systems� the mobility is proportional to the inverse
square of the effective mass, �i.e., ��1 /m2�. However, in the
low-density limit �or qTF /2kF�1� the mobility is indepen-
dent of the carrier mass. Thus, in the simple theory the ratio
of mobility increases to unity as density decreases. However,
the measured mobility ratio decreases as density decreases
below n�1011 cm−2. Again this experimental behavior
arises from nonlinear screening and the large rs values at low
carrier density.

In Fig. 2�b�, in addition to the full numerically calculated
RPA-Boltzmann transport results and the experimental re-
sults from Ref. 5, we also show the simple results for �h /�e
derived on the basis of the qualitative analytic formula of Eq.
�4�. It is quite interesting to note that in the experimental
density range covered in the measurements of Ref. 5, the
measured �h /�e
0.28–0.32 is almost a density indepen-
dent constant, which does not differ much from the simple
electron-hole effective-mass ratio �h /�e
me /mh
0.23
which is very different from either the high-density �qTF
�2kF� asymptotic value �h /�e= �me /mh�2
0.05 or the low-
density �qTF�2kF� asymptotic value �h /�e
1. The dis-
agreement of the approximate formula, Eq. �4�, with the ex-
perimental data can be easily understood by the realizing that
the dimensionless parameter qTF /2kF=rs /�2 changes be-
tween 0.92 and 1.9 for electrons and 4.2 and 8.5 for holes in
the experimental density range of Fig. 2, and therefore nei-
ther the strong screening nor the weak screening approxima-

tion applies. It is, however, curious that the actual experi-
mental �and the full theoretical� values of �h /�e	me /mh in
the experimental density range studied in Fig. 2, which �i.e.,
����m−1� would follow trivially from the Drude conduc-
tivity formula �=ne2� /m if one assumes � to be a constant
independent of effective mass as is often done in the litera-
ture. This apparent approximate agreement of the trivial
�h /�e	me /mh relationship with the experimental results of
Ref. 5 is, however, purely fortuitous, and should not be taken
seriously. For very high �low� electron and hole density,
there is no doubt that �h /�e	me

2 /mh
2 �	1�, but both the

asymptotic high and low-density regimes would be difficult
to achieve experimentally, and in smoothly going between
these two regimes, the intermediate density regime of experi-
mental interest only seems to obey the simple �h /�e
	me /mh relation since this me /mh behavior is obviously in-
termediate between �me /mh�2 and �me /mh�0=1.

It is, however, interesting to note that the approximate
mobility formula defined by Eq. �4�, where the charged im-
purity scattering strength is characterized by the constant
momentum transfer of �2kF+qTF� completely ignoring the
wave vector dependence of Coulomb interaction and assum-
ing Thomas-Fermi screening so that the 1 /q Coulomb scat-
tering strength is parameterized simply by 1 / �2kF+qTF� cor-
responding to the q=2kF backward carrier scattering across
the 2D Fermi surface, describes well the density dependence
of mobility as compared with the full RPA-Boltzmann
theory. Both results disagree with experiments at low carrier
densities for reasons discussed above.

III. COULOMB DRAG

The principal motivation6,7 behind trying to fabricate
closely spaced e-h bilayers with small interlayer separation
is to probe the interlayer e-h Coulomb interaction. The bi-
layer frictional drag, which is a direct probe of interlayer
correlations, in a many body-Fermi liquid diagrammatic per-
turbation theory with dynamically screened electron-electron
interaction is given by1,3

�D =
�2

2�e2npkBT
� q2d2q

�2��2� d�
Fe�q,��Fh�q,��

sinh2���/2�
, �5�

where Fe,h�q ,��= �ueh
sc�q ,���Im �e,h�q,��, with ueh

sc

=veh
c /�q ,�� is the dynamically screened interlayer Coulomb

interaction between the electron and the hole layers, and
��q ,�� is the 2D polarizability. Note that the dielectric func-
tion �q ,�� entering Eq. �5� is a two-component tensor and
is given by16

��q,��� = �1 − ve�q��e�q,���1 − vh�q��h�q,��

− veh�q�vhe�q��e�q,���h�q,�� , �6�

where e ,h correspond to electron and hole layers. �For de-
tails on the drag formula and its implications, see Refs. 1 and
3.� With the assumption of a large interlayer separation d
�kFd�1,qTFd�1� it is easy to show that within RPA, where
vertex corrections are neglected in the dynamical polarizabil-
ity �, the drag resistivity is given at low-temperatures �T
�TF� by the simple formula:
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�D =
memh

npe2

��3�
16�

�kBT�2

kFe
kFh

qTFe
qTFh

d4 �7�

with � being the Riemann zeta function. This result shows
that �D�T ,d��T2 /d4. However, we note that Eq. �7� is valid
only for high density and low-temperature �T /TF�1� as well
as large separation. At low densities or small layer separa-
tions �i.e., kFd�1� the actual drag is much enhanced com-
pared with the simple formula of Eq. �7� as has earlier been
discussed.12

In our calculation we include the finite layer thickness
effect and relax the condition kFd�1 because kF and d are
small in the samples of Refs. 6 and 7—this makes large
momentum scattering important in contrast to the usual kFd
�1 case where carrier backscattering is neglected. In Cou-
lomb drag between two high-density 2D electron layers with
large layer separation �i.e., kFd�1� the backward scattering
q
2kF is ignored due to the exponential dependence of the
interlayer Coulomb interaction V�q��exp�−qd� /q on d. In
this case the Coulomb drag is dominated by small-angle scat-
tering and Eq. �7� is a very good approximation. In the e-h
bilayer of small d �and low density� in Refs. 6 and 7, large-
angle scattering becomes important and Eq. �7� would not
apply at all, and one needs to carry out the full calculation of
Eqs. �5� and �6� to obtain the e-h drag.

We directly theoretically calculate the e-h Coulomb drag
using Eqs. �5� and �6� without making any additional as-
sumptions and using the sample parameters of Refs. 5–7. In
Fig. 3 we show the calculated drag resistivity of electron-
hole bilayer with each well width of a=200 Å as a function
of temperature for several matched e-h densities. Here the
electron layer is the driving layer and the hole layer is the
drag layer, i.e., the current Ie is applied in the electron layer
and drag voltage VD measured in the hole layer with �D
=VD / Ie. In Fig. 3�a� we use the density n= p=5, 7, 10, 12

1010 cm−2 and a layer separation of d=300 Å. In the ex-
periments of Refs. 6 and 7 the observed low-density drag
resistivity �n= p=5
1010 cm−2� is orders of magnitude
larger than the corresponding theoretical drag result of Eq.
�7�, but our calculation with Eq. �5� shows good agreement
with the experimental data within a factor of 2. In e-h bilay-

ers the low-energy acoustic plasmon lies inside the single-
particle excitation region of the heavier carriers,17 which
gives rise to a tremendous enhancement of drag resistivity
not captured at all in Eq. �7�. We include this effect by going
beyond the simple RPA �valid at high density� in calculating
the polarizability by incorporating vertex corrections through
local-field corrections.12,18 The strong correlation effect in
the low densities gives to a large enhancement of the drag
due to the presence of coupled plasmon modes.

In Fig. 3�b� we use the density n= p=4, 6, 8, 10, 12

1010 cm−2 and a layer separation of d=200 Å. With this
narrow barrier sample, Seamons et al.7 find very interesting
and unexpected drag resistivity which is not observed in the
d=300 Å barrier sample of Ref. 7. Even though the mea-
sured drag resistivity show �D�T2 behavior above T
1 K,
for temperatures below 1 K an upturn of the Coulomb drag is
measured with decreasing temperatures �instead of �D→0 as
T2, �D increases as T→0�. Such an anomalous drag behav-
ior, with �D increasing with decreasing T �i.e., an upturn� at
low temperatures, is not seen in bilayers involving only elec-
trons or only holes such at low carrier densities,12 and is thus
a characteristic feature of electron-hole bilayers at small
layer separations. The characteristic temperature below
which the observed �D increases anomalously in Refs. 6 and
7 with decreasing temperature itself increases with density.
Thus, the upturn in drag at low temperature cannot be ex-
plained within our Fermi-liquid theory and may signal the
formation of a novel phase in electron-hole system. The ori-
gin of this apparent non-Fermi-liquid behavior remains a
mystery at this stage and requires further theoretical analysis.
However, our calculation at temperatures above T=1 K
shows good agreement with the experimental data and we
also get good agreement at all temperatures for sample with
larger d, neither of which would happen with the simple
formula of Eq. �7� which disagrees with experiments by or-
ders of magnitude.

IV. DISCUSSION AND CONCLUSION

Before conclusion, we return to transport and discuss the
layer independence of transport in the electron-hole bilayer.
This layer independence is reflected in the experimental
observation5–7 of the mobility in one layer �e.g., the electron
layer� to be independent of the carrier density in the other
layer �i.e., the hole layer� and vice versa. In the presence of
the adjacent layer the total scattering time of one layer can be
expressed as 1 /�t=1 /�i+1 /�D, where �i is the scattering time
due to the background charged impurities, and �D is the e-h
scattering time due to the interlayer scattering between elec-
trons and holes which is given by �D=m /ne2�D, with �D
being our calculated interlayer e-h frictional drag resistivity
�Eq. �5� and Fig. 3. However, for samples we consider in
this paper, the typical scattering times are �i	ns and �D
	�s below T=2 K. Thus, �i

−1��D
−1. Therefore we expect

the mobility of each layer to be dominated by impurity scat-
tering and entirely independent of the adjacent layer density.
The extremely small measured and calculated values of the
interlayer Coulomb drag �D, corresponding to extremely
long drag relaxation times of microseconds, imply that inter-
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FIG. 3. �Color online� Calculated Coulomb drag of electron-
hole bilayer systems with �a� d=300 Å barrier and �b� d=200 Å
barrier. In �a� we use the matched electron-hole density of n= p
=5, 7, 10, 12
1010 cm−2 and in �b� n= p=4, 6, 8, 10, 12

1010 cm−2.
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layer e-h scattering makes a very small �	0.1%� contribu-
tion to the measured dc conductivity �i.e., 2D mobility� of
each layer. The measured 2D mobility in the experimental
e-h bilayers of Refs. 5 and 7 is therefore entirely dominated
by the background charged impurity scattering. As an imme-
diate consequence of this finding ��D��i�, we predict that
the measured 2D electron �hole� mobility in each layer
would be completely independent of the carrier density in the
other layer. This prediction has indeed been explicitly veri-
fied experimentally.6,7

In conclusion, we theoretically study transport and fric-
tional drag of undoped electron-hole bilayers based on
HIGFETS within a many-body Fermi-liquid theory. We find
that the unintentional background charged impurity scatter-
ing is the most dominant resistive scattering mechanism in
the recent experimental systems.5–7 We also find that the drag
resistivity is significantly enhanced compared with the exten-
sively used simple theory �Eq. �7� in the literature when the

electron-hole layer separation is small, but our Fermi-liquid
many-body approach cannot explain the recently observed6,7

upturn in the drag resistance with the lowering of tempera-
ture, which may be indicating the emergence of a non-Fermi-
liquid excitonic phase in closely spaced bilayers. Our Fermi-
liquid theory would always predict �D→0 as T→0, and �D

increasing with decreasing T is an unexplained anomaly in
the experimental observation of Refs. 6 and 7.

Note added. We would like to note that we recently be-
came aware of experimental results by Croxall et al.,19 which
appeared as arXiv:0807.0134 long after the submission of
our work to the Physical Review. In Ref. 19 the measured
Coulomb drag of electron-hole bilayer systems shows the
same anomalous features as observed in Refs. 6 and 7
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